Instrumentation

DAVIS: A direct algorithm for velocity-map imaging system

We have developed a direct (non-iterative) algorithm to reconstruct the three-dimensional (3D) momentum-space picture of any charged particles collected with a velocity-map imaging system from the two-dimensional (2D) projected image captured by a position-sensitive detector. The method consists of fitting the measured image with the 2D projection of a model 3D velocity distribution defined by the physics of the light-matter interaction. The meaningful angle-correlated information is first extracted from the raw data by expanding the image with a complete set of Legendre polynomials. Both the particle’s angular and energy distributions are then directly retrieved from the expansion coefficients. The algorithm is simple, easy to implement, fast, and explicitly takes into account the pixelization effect in the measurement.

G. Harrison et al., Journal of Chemical Physics, 148 194101 (2018)

Design of an optically-locked interferometer for attosecond pump-probe setups

We have developed an active stabilization system for attosecond pump-probe setups based on a Mach-Zehnder interferometer configuration. The system employs a CW laser propagating coaxially with the pump and probe beams in the interferometer. The stabilization is achieved with a standalone feedback controller that adjusts the length of one of its arms to maintain a constant relative phase between the CW beams. With this system, the time delay between the pump and probe beams is stabilized within 10 as rms over several hours. The system is easy to operate and only requires a few minutes to set up before any pump/probe measurements.

J. Vaughan et al., Optics Express, 27 30989 (2019)